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J. Phys. A: Math. Gen. 19 (1986) 1345-1353. F'rinted in Great Britain 

Poincare map for scattering states 

C Jung 
Fachbereich Physik, Universitat Bremen, 2800 Bremen, West Germany 

Received 30 July 1985 

Abstract. For scattering states in classical mechanics a map is constructed, which is an 
analogue to the Poincari map for bound state trajectories. Iteration of this map indicates 
which parts of the phase space are filled by unstable trajectories that are sensitive to small 
changes in the initial conditions, and which regions are filled by stable trajectories. 
Examples for this map are given by numerical calculations for scattering off a simple 
two-dimensional model potential. 

1. Introduction 

For Hamiltonian systems with two degrees of freedom the following question is of 
considerable interest: in which regions of the phase space P are the trajectories sensitive 
to small changes in the initial point (i.e. behave chaotically) and in which regions are 
they regular? 

For bound states there is a method for investigating this problem, which goes back 
to Poincari (1892): because the energy E is a constant in Hamiltonian systems, we 
restrict the considerations to the three-dimensional subset PE of the phase space 
belonging to a specific value of E. In PE we choose a two-dimensional surface S 
transverse to the trajectories and construct a map M (the PoincarC map) on S by the 
following prescription. The image of a point X ~ E  S is found in this way: take the 
trajectory x ( t )  through xo and follow it until it pierces S again in the same direction 
at the point xl. Then, the point x1 is the image point of xo, i.e. M ( x o )  = xl. 

For stability investigations the map M is iterated and the set I ( x o )  = {M"(xo) ln  EN} 
is plotted on S. If I ( x o )  consists of a finite number of points only or if it is a 
one-dimensional set, then the trajectory through x,, is regular (periodic or quasi-periodic 
respectively). If I is dense in a two-dimensional subset of S, then x,, lies in a chaotic 
region. If the PoincarC plots of a system consist of invariant lines only for all energies 
and for all initial points, then we interpret this result as a numerical indication of a 
second independent conserved quantity besides the energy. For a mathematically 
rigorous derivation of the PoincarC map see 5 7.1 in Abraham and Marsden (1978). 
For many examples of the utility of PoincarC plots see Lichtenberg and Lieberman 
(1983). 

The generalisation of this idea to scattering states meets the following problem 
immediately. The projectile comes in from infinity, is close to the target only for a 
finite time and goes off to infinity again. Accordingly, any surface S is pierced only 
a finite number of times by a generic scattering trajectory. In this sense any generic 
scattering trajectory is regular, because the set of points in which it pierces S cannot 
be dense in a two-dimensional subset. On the other hand, this kind of regularity is 
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also fulfilled for scattering trajectories in potentials containing chaotic bound states. 
Therefore it does not give any hint of the existence of an analytic second integral of 
motion on the whole phase space. 

The integrability of bound state systems is decided by watching the long time 
behaviour of trajectories that always come back into the same region of the phase 
space. In order to obtain a similar criterion for scattering systems, it is necessary to 
construct some feedback of the outgoing trajectories back into the region near the 
target. In § 2 a possibility for this feedback is given by cutting a neighbourhood K of 
the target out of the phase space and by gluing together parts of the boundary of K .  
This provides an automatic feedback of outgoing scattering trajectories into incoming 
trajectories. The geometry of this construction is explained in § 3.  In § 4 numerical 
examples for our scattering map are given for the motion in a simple model potential. 
In § 5 the method is generalised to scattering in three-dimensional potentials. Section 
6 contains final remarks. 

2. Construction of the return map 

First we consider systems with two degrees of freedom. The configuration space is a 
two-dimensional plane in which a projectile without internal degrees of freedom scatttis 
off a space fixed potential. The Hamiltonian function is 

H ( x ,  y, P x ,  P,) = (pf;/2m) + (P: /2m)  + V(X,  Y )  (1) 

where x , y  are Cartesian coordinates in the configuration space and p x , p y  are the 
canonically conjugate momenta. For the moment let the support of the potential be 
finite, so that V = O  outside KR, the circle with radius R in the configuration space. 
Accordingly the projectile moves along straight lines outside KR. These straight lines 
can be labelled by the direction of the momentum given by the angle 

a = tan-'(Py/Px) ( 2 )  

(3) b = ( x P , - Y P x ) ( P f + P , )  ' 

and by the impact parameter 
2 - 1 / 2  

Now let us look at an exact scattering trajectory with energy E hitting the target 
potential. For large negative times the projectile moves outside KR along a straight 
line towards the potential. This incoming motion can be specified by the corresponding 
pair (ai, bi). Eventually the trajectory crosses KR and then the projectile will stay 
inside KR for some time. Even for well behaved potentials without singularities there 
can be a subset of values (a, b )  for which the projectile gets stuck at the potential. 
However, those values (a, b )  are an exceptional set of measure zero (see Newton 1982, 
ch 5.4). The generic trajectory comes out of KR after a finite time and then the projectile 
moves on a straight line, again away from the potential. This outgoing asymptotic 
motion will be labelled by (af, bf). The action of the scattering dynamics consists in 
connecting a given pair (air bi), which is not in the exceptional set, with the correspond- 
ing pair (af, bf). Accordingly we define the scattering map M by 

M(ai, bi) = (af, bf). (4) 
M acts on incoming asymptotic states and turns them into outgoing asymptotic states 
of the same energy. In order to obtain an iteration, we need in addition a second map 
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F, which turns outgoing asymptotic states into incoming asymptotic states. Then an 
iteration can consist: of applying M and F alternately. 

In order to make a particular choice for F we use the following two reasonable 
restrictions. 

(i)  F is allowed to depend on af and bf only and it must not depend on any other 
variables or parameters and not on the particular potential V. 

(ii) If V = 0, then the composition of M and F should be the identity map for all 
values of ai and bi, i.e. we request that 

F .  M (  ai, bi) = (ai, bi) for all (ai, bi) 

if V ( x ,  y )  = 0 for all x,  y.  
Under these restrictions there remains only the following choice for F :  F applied 

to the outgoing trajectory labelled by ( a ,  b )  gives that incoming trajectory, which has 
the same values of (Y and b and E. This gives a one-to-one connection, because for 
any pair ( a ,  b )  there exist exactly one incoming and one outgoing asymptotic state to 
the fixed energy E. Therefore, in the (a, b )  plane F acts like the identity and the 
iterated scattering map is just the iteration by the map M only. This iteration of M 
in the (a, b )  plane is our suggestion for a scattering analogue of the PoincarC map. 

3. Geometry of the feedback map F 

The action of the feedback map F can be understood in the following way: first we 
choose a fixed value E of the energy. Because V = 0 outside K R ,  lpI = d 2 m E  on K R .  

Therefore, for given energy, the state of the projectile on K R  is determined by the two 
angles a and cp. cp is the coordinate on the circle K R ,  given by 

cp =tan-'(y/x). ( 5 )  

So, the asymptotic states of the system can be labelled by a point on a two-dimensional 
torus T. If -7112 < cp - a  < 7112 mod 271, then it is an outgoing trajectory and we write 
(a, cp) E 0. If 71/2 < cp - a  < 37112 mod 271, then it is an incoming state and we write 
(a, cp) E I. For cp - LY = f 7 r / 2  the projectile grazes K R  tangentially. These tangential 
trajectories form two disjunct closed lines rl and Tz on the torus T and they are the 
boundaries between 0 and I. Next, the configuration space is restricted to the disc 
DR, the circle K R  and its interior. In PE (the subset of the phase space which belongs 
to the energy value E )  to each point of D R  a copy of the circle is attached, which 
gives the possible values of the direction of the momentum p .  Thereby a full ring U 
with surface T is cut out of PE. 

In the configuration space the feedback map F can be constructed in the following 
way: if the projectile crosses K R  from the inside to the outside in the point q = ( x ,  y ) ,  
a straight line through q is drawn in the direction of -p .  This line crosses K R  again 
at another point ( x ' , y ' )  which is the image of ( x , y )  under the map F. In the polar 
coordinate cp we find 

F (p )  = 2 a  + 7T-  cp ( 6 )  
where a is the direction of p ,  which is conserved under F (all angles are taken modulo 

On the torus T in PE the map F can be interpreted as identification of the point 
( a l ,  (PI)  E 0 with ( a 2 ,  p2) E I where a1 = a2 and F(cp,) = cp2 .  After this identification 

271). 
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the energetically accessible part of the phase space for a fixed E > 0 is a part of the 
interior of U together with a surface S, which is half of a torus. The identification of 
the points of 0 and I causes an automatic feedback of outgoing trajectories into 
incoming trajectories. 

Now the scattering problem is turned into a problem with a finite configuration 
space and the usual procedure for the return map can be applied. For the Poincart 
map the surface S is chosen. In this surface we do not use the variables CY and cp but 
prefer CY and 6. This choice guarantees that the PoincarC plot is independent of the 
value R as long as R is so large that V=O outside K R .  

4. Numerical examples 

We give a few examples for the PoincarC map plotted by the prescription given in the 
previous sections. The following model potential is used: 

V(x,  y )  = [exp(-[’)]([’- Et4+ C X [ ~ ) ( [ ’ - A ~ T ’ ) - ’  (7)  

where 

6 = {[ ( x + A)’+ ,Y~]”’ + [ ( X  - A ) 2 + ~ ’ ] ” ’ } / 2  

7 = { [ ( x +  A)’ +y’]”’ - [ ( x  - A)’+ y2]’”}/2A. 

V depends on the three free parameters A, B and C. For C = 0 the system is separable 
in the elliptical coordinates ( 6 , ~ ) .  The distance between the two focal points of the 
ellipses is 2A. For C = 0 and A = 0 the potential is rotationally symmetric. For C = 0 
and B < 0 the potential is repulsive everywhere. For B > 0 the potential is positive 
near the origin and negative for large distances from the origin. 

This potential is not identical to zero outside some circle, but it decreases fast 
enough, so that we can choose R = 10. Then the potential outside K R  does not cause 
any effects within the numerical accuracy. For all numerical calculations we set the 
mass m of the projectile to the value 1 and measure all distances and the energy in 
arbitrary dimensionless units. 

For C = 0 and A = 0 the impact parameter is a conserved quantity in the scattering 
process. Therefore the corresponding Poincari map is a pure twist map, where each 
line 6 =constant is shifted by an angle 6 ( 6 ) ,  which is just the scattering angle. In 
figure 1 6 ( b )  is plotted for B = 1.5 and energy E = 0.5. For E < 1 all points on the line 
6 = 0 are points of period 2 .  For B > 0 there are at least two lines of fixed points. In 
our example in figure 1 there are two of‘ them at b = 1 1 . 2 .  

For C f 0 the system is no longer integrable and correspondingly the PoincarC map 
becomes a disturbed twist map. (The perturbation of twist maps is a well studied 
problem, see e.g. Chirikov (1979) and Greene (1979).) Figure 2 shows the iterated 
scattering map for (A ,  B, C) = (0, 1.5,0.2) .  Because the maps for potential (7 )  are 
symmetric under inversion in the point (0, O), only the upper half of the plot is shown. 
Of the fixed points at b = 1.2 only two survive-one elliptic point at CY = - ~ / 2  and 
one hyperbolic point at a = + ~ / 2 .  The reason is that the perturbation of the potential 
goes like cos(9) in polar coordinates (for a perturbation like cos(ncp) there would be 
n elliptic and n hyperbolic points). In the same way for the points of order 2 at b = 0 
only one elliptic pair and one hyperbolic pair survive. For the small value 0.2 of the 
perturbation parameter C we do not yet see any stochastic regions in the (CY, b )  plane. 
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Figure 1. Classical deflection function O ( b )  of the model potential ( 7 )  for the parameter 
values (A, E, C) = (0, 1.5 ,O) .  Energy = 0.5. The vertical axis gives the impact parameter. 
The horizontal axis gives the scattering angle. 

I I 

- 0.50 I 
-77 n 

Figure 2. Poincare plot of the model potential (7)  for the parameter values (A,  E, C) = 
(0, 1.5.0.2). Energy = 0.5. The vertical axis gives the impact parameter. The horizontal 
axis gives the angle (direction) of the momentum. The plot is symmetric under inversion 
at the point (0,O). Each initial point is marked by a cross. 

The appearance of chaotic strips can be seen for C = 0.4, shown in figure 3. Along 
the stable and unstable manifolds of the hyperbolic point of period 2 a clearly visible 
chaos strip has been created. The chaos strip of the hyperbolic point of period 1 is 
still very narrow and in the figure it looks like a separatrix line. 

Figure 4 shows the images of some lines b=constant under the map M. Most 
image lines are quite flat and smooth. Only the line near b = 0 starts to grow tendrils 
and the image line can no longer be projected one-to-one onto its pre-image. For 
C < 0.4 all lines b = constant map on quite flat lines and for C becoming greater than 
0.4 more and more image lines grow tendrils of increasing complexity. Of course, for 
Ibl> 3 all image lines are nearly straight because of the fast decrease of the potential 
for large distances from the origin. It is interesting to observe that the visible chaos 
in figure 3 has its origin in the region around 6 = 0. This connection between the 
beginning of tendrils in figure 4 and the appearance of chaos in figure 3 for coinciding 
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Figure 3. For explanations see figure 2. (A, B, C) = (0, 1.5,0.4). 
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Figure 4. Several lines 6 =constant and their images under the scattering map M. The 
vertical axis gives the impact parameter. The horizontal axis gives the angle (direction) 
of the momentum. (A, B, C )  = (0, 1.5,0.4). 

values of b is consistent with conclusions which MacKay and Percival (1985) have 
drawn from Birkhoff's theorem (Birkhoff 1920) for perturbed twist maps. They show 
that invariant lines going around all values of the angle are no longer existent in a 
region of the plane, as soon as the images of horizontal lines in this region become 
steeper than some limit value. 

For C = 0.7 in figure 5 also, the hyperbolic fixed point at b = 1.2 has created a 
visible chaos strip. The chaos at b = 0 has already become quite large and it surrounds 
the islands of period 2 and the remainders of the islands of period 3. 

For C = 1 in figure 6 there is only one large chaotic region surrounding the big 
island of the elliptic fixed point. 

If the construction proposed in P 2 should make sense, then it must create plots 
consisting of invariant lines only for all integrable systems and not only for rotationally 
symmetric ones. Figure 7 is the PoincarC plot of potential (7 )  for the parameter values 
(A, B, C) = (1,3,0). In this case the system is separable in elliptical coordinates and 
therefore it is all the more integrable. Figure 7 shows lines only and no chaotic regions. 
Notice that in an interval of b approximately between 0 and 1 (but outside of the two 
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Figure S. For explanations see figure 2. ( A ,  E, C) = (0, 1.5,0.7). 
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Figure 6. For explanations see figure 2. ( A ,  E,  C) = (0, 1.5, 1). 
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Figure 7. For explanations see figure 2. (A ,  E, C) = (1,3,0). 
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large bubbles) any line and its counterpart for the corresponding negative value of b 
belong to the same initial value. In this strip in each application of M the value of b 
jumps from positive to negative values and back to positive values in the next step. 
Outside this interval the value of b remains always either positive or negative in the 
iteration. 

For the last plot in figure 8 we have set (A, B, C) = (1,3,0.5). Now the integrability 
is destroyed and accordingly we see a large chaotic region surrounding two different 
independent islands around elliptic fixed points and an island pair belonging to an 
elliptic point of period 2. 

We have given examples for E =0.5 only. For small E the chaos shows up for 
smaller values of the perturbation parameter C. For greater E the chaos becomes less 
and less and for E > 1 it is hard to find any chaotic region at all. 

3.N 

-- - ......... -4 ........ ........ .---- "".,-- "." - 
...... 

, .  1- X 
... 

. .  , 

-- ~ /----- 
1- --_______-- ------ 

............. ............... ...... ......x..... .... .... .................... 
-3.00 

-n 

Figure 8. For explanations see figure 2. (A, B, C) = (1,3,0.5). 

5. Scattering in three-dimensional potentials 

Next the method is extended to scattering in three-dimensional potentials. We can 
construct anything along the same pattern as in § 2. Let the potential be located around 
the origin of the configuration space. K R  is a two-dimensional surface of a sphere of 
radius R centred in the origin. R is chosen so big that V is negligible outside KR. 

For any given energy E > 0 each straight trajectory piercing KR can be characterised 
by the direction of the momentum (given by two apgles a and p )  and by its two- 
dimensional impact parameter b. For each 4-tuplc ( a ,  P, b )  there is one incoming 
trajectory as well as one outgoing asymptotic trajectory to the energy E. These two 
straight trajectories are connected by the feedback map F. 

By moving along the exact scattering trajectory that belongs to the incoming 
asymptote (ai, pi, bi), the scattering map M maps (ai, pi, bi) onto the corresponding 
outgoing values ( af, Pf, bf). These outgoing values will be used as incoming values for 
the next iteration step. Thereby an iterated map is constructed in the four-dimensional 
( a ,  p, 6 )  space. For scattering states it is the analogue to the usual four-dimensional 
Poincart map for bound states of systems with three degrees of freedom. 

Unfortunately, we cannot give numerical examples for these four-dimensional plots. 
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6. Conclusions 

We have given a recipe on how to construct an iterated map for scattering states that 
corresponds to the usual Poincar6 map for bound states. The numerical examples in 
§ 4 suggest that our proposed construction gives reasonable results. In particular, the 
qualitative structure of the plots gives numerical evidence for which parameter values 
a second analytic integral of motion exists on the whole phase space and for which 
values it does not. 

For the non-integrable cases the scattering map indicates which regions of the 
phase space are filled by trajectories that react in a regular way on small changes of 
the initial conditions, and which regions are filled by trajectories that react in a chaotic 
way on small changes of the initial conditions. Even though all scattering trajectories 
are regular in the sense mentioned in 0 1, it might be useful to divide them into stable 
ones and unstable ones according to their behaviour in the iterated scattering map. 

In this sense figure 8, for example, shows that, for scattering off a deformed elliptical 
potential, those trajectories with small impact parameter are stable which hit the ellipse 
near the flat side (i.e. a = * ~ / 2 ) .  In the coordinates used in equation (7) these 
trajectories come in along the y axis, either the positive or the negative part. Those 
trajectories are unstable which hit the ellipse near the most curved points (i.e. (Y - 0  
or T) .  These trajectories come in along the x axis, either the positive or the negative 
part. Trajectories with large impact parameter (i.e. those trajectories which miss the 
target) are always stable, an obvious result. 

The method has been demonstrated on a simple model potential, which is par- 
ticularly useful for the presentation of the basic ideas. However, this potential is not 
interesting in itself. We hope to use the method in the future to investigate the stability 
and the integrability of more complicated scattering systems, which are of importance 
for other physical problems. 
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